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SUMMARY

A rapid and sufficiently accurate method, for most practical purposes,
of determining laminar-boundary-layer characteristics in flow with a given
free-stream Mach number and given velocity distribution at the edge of the
bound@ry layer is presented. 75e method can be easily applied to flow with
zero pressure gradient for any (constant) Wandtl nwnber of the order of
unity and any given temperature distribution along the wall. Numerical
examples are given to illustrate the method and the satisfactory accuracy
obtained. For flow in an axial pressure gradient, the method can be

4 applied for a IYandtl nuber of unity and any given uniform wall temper-
ature. The methods developed here are based on an application of the
K&rmdn integral method to both the momentum and energy equations, in&
conjunction with a sixth-degree velocity profile and a seventh-degree
stagnation-enthalpyprofile. A single boundary-layer thickness and one
of the coefficients in the thermal profile are the parameters in this
two-parsmeter method.

INTRODUCTION

The aim of this report is to present a relatively stiple method,
sufficiently accurate for most practical purposes, of calculating the
laminar-boundary-layer characteristics in the ccs.upressibleflow over a
given object with heat transfer at the wall.

The method is based on the extension of the K&m&-Pohlhausen method
to sixth-degree velocity profiles and seventh-degree stagnation-enthalpy
profiles. The use of sixth-degree velocity profiles is in accordance with
the conclusions of reference 1, wherein it was found that such profiles
can usually be expected to lead to results of adequate accuracy without

‘r’ much increase in computational work. Such profiles have been applied
with satisfactory results for compressible flow over a flat plate with
heat transfer (ref. 2) and for ccznpressibleflow in an axial pressure.-.* gradient without heat transfer (refs. 3 and h).
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The present analysis consists of two main parts. In the first a
simple approximate general solution is developed for flow without axial
pressure gradient, with my given Wch number (neglectinghypersonic
effects) and given distribution of temperature along the wall. The
Prandtl nmnber is also left arbitrary, although it is required to be of
the order of magnitude of unity. The coefficients of specific heat, as
well as the Prandtl number, are assuned as constant, while the viscosity
coefficient is assumed to vary linearly with the temperature, the propor-
tionality factor being chosen in accordance with the Sutherland relation,
as in references 1, 2, 3, 5, and 6. In the second part of this analysis,
a simple approximate general solution is developed for Plow in a pressure
gradient with any given constant wall temperature, free-stream Mach num-
ber, and velocity distribution outside the boundary layer. The Prandtl

—

number is, however, assumed to be unity.

4

.

F

A brief indication of the pertinent literature may be worth while.
The flow without axial pressure gradient (e.g., flow over a flat plate)
has, of course, already been treated to a considerable extent. K.&n&
and Tsien (ref. 7) derived solutions for a Prandtl number of 1, constant
wall temperature, and viscosity coefficient proportional to a power of
the temperature. Chapman and Rubesin (ref. ~) have ?btained exact (nwner-
ical) solutions for variable wall temperature and a linear viscosity-
temperature relation. Van Driest (ref. 8) has accurately calculated a

● .-

series of curves showing skin friction, heat-transfer coefficients, and
velocity and temperature profiles for a constant wall temperature, using M

the Sutherland viscosity-temperaturerelation. Klunker and McLean
(ref. 9) have calculated the boundary-layer cmracteristic~ USing the ““”” -

actual variation of Prandtl number, specific heat, -d viscosity coeffi-

cient with temperature, while Young and Janssen (ref. 10) and Moore
(ref. 11) have done likewise with the aid of a differential ~ly~er, -

Moore taking dissociation into account.

In each of the above references, the calculations, though exact, are
fairly tedious, while, except for reference ~, the wall temperature iS

assumed as constant. The advantage of the method presented in the present
report is that the calculations can be perfo~ed with relatively little
difficulty for a prescribed wall-temperature distribution, Mach number,
and Frandtl number. Although the results thus obtained will not be exact,
they will usually be sufficiently accurate in practice.

—

In contrast with the literature on flow over a flat plate, the liter-
ature on compressible boundary-layer flow in a pressure gradient with heat
transfer still appears to be limited. A good survey of work done on
incompressible flow can be found in reference 12. Kalikh&n (ref. 13) y
has treated the compressible case by applying the K&n&-Pohlhausen method
to both the momentum and ener~ equations. Ferrari (ref. 14) has recently
presented an accurate, but elaborate, method of calculating the boundary-
layer characteristics for arbitrary Frandtl nwmber and uniform wall

*
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temperature. The present analysis has, once again, the advantage of
L presenting a general approx-te solution which involves relatively little

computational difficulty. However, the Frandtl number is here restricted
to unity.

*

The method of analysis used in this investigation merits some ccxmnent.
As in ref=ences 13 and 15, stagnation-enthalpy,rather than temperature,
profiles are used. The use of sta~tion-enthalpy profiles leads to
significant mathematical simplifications,while it can be shown, more-
over, that for a Frandtl number of 1 the equations used here automatically
lead to what are known to be exact integrals of the energy partial-
differential equation. As has already been stated, the velocity profiles
and stagnation-enthdpy profiles are respectively of sixth and seventh
degee here. Ih reference 13, both profiles are of the more customary,
but usually less accurate, fourth-degree type. Finally, it is of interest
to observe that in the present analysis only a single boundary-lay=
thickness is used, instead of a dynsmical.and a thermal boundary-layer
thickness, such as used in references 13 smd 15. This, however, does not
necessarily impose any undue restrictions on the thermal profiles, since
the latter have here been permitted to contain sm additional coefficient,
not determined in advance by the boundary conditions. This additional
coefficient, which must be determined by the differential equations,
replaces the thermal boundary-layer thiclmess as a psrameter. This

. explains why the sta~tion-enthalpy profiles are here of one degree
higher than the velocity profiles. For Prandtl numbers near unity, as
is the case for air, it has been found (cf., for example, refs. 13, 15,

4 and 16) that the ratio of dynsmical to thermal boundary-layer thiclmess
is close to unity. Consequently, the present analysis should yield
sufficiently accurate results for such cases. The advantages of using
a single boundary-layer thickness are that the equations thus obtained
are somewhat simpler and that it appears scmewbat easier to solve for
the additional coefficient than for the second boundary-layer thickness,
especially for flow without a pressure gradient.1-

This work, carried out at the Pol@echnic Institute of Brooklyn
Aeronautical Laboratories, was sponsored by and conducted with the
fhancial assistance of the National Advisory Comnittee for Aeronautics.
The authors are happy to aclamwledge the aid of W. Richard Grape in
carrying out the numerical calculations and in checking the equations.

*; %his is due primarily to the fact that in the two-thiclmess method,
the ratio of the thichesses appears in the equations in a ccmrplicated
manner.

.
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A,Il constants in equations (50) and (51) d

A,D,(PI constants defined by eqwtions (63)-.

aJ coefficient of TJ

E~ constant “average”

bj
Coefficient Of Tii

F)l constant “average”

P

in velocity profile (eq. (20))

value of a2

in stagnation-enthalpyprofile (eq. (21))

value of bl

c proportionality factor in temperature-viscosityrelation
(eqs. (9) and (10))

E constant-“average” value of C

Cf

Cfl

Jxh.way)oti

average skin-friction coefficient, +0

(1/2)pmum2

local skin-friction coefficient,
/)(VWay). (pmum2 2

CJ coefficient of
(eq. (Al))

CP’CV .
specific heats
respectively

‘J
coefficient of

~j in given ~ll-temperature distribution

●

b

at constant pressure @ at constant volume,

.!j~in equation (A5)
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8 ‘11F2YF3 integrals appearing in equations (11) and (12) and defined
thereafter (cf. also ~qs. (61))

4 Fl,F2 constant ‘~average”values of

‘i
functions of 7 appearing in

F1 and F2

equation (A3) and defined there

G1(~) = /Ho HI(E); for ~r I= 1) ~ = To/Te (cf. also .eq.(46)}

G2YG3(E)yG4(~)jG5(E)jG6 (E) P==-h=s defimd in equations (33), (38b), -

H

He

h

●
k

L
*

M

m,j,l

‘Nu

%

P

~

R

RL

%

*
s

. T

(%), and (%)

stagnation enthalpy, ( /)U2 2 + CPT

stagnation enthalpy corresponding to equilibrium wall
temperature

local heat-transfer coefficient (eq. (40))

coefficient of heat conductivity

characteristic length

Mach number

constants defined by equations (67a)

Nusselt number

Prandtl number, Wcp/k

static pressure

heat-transfer rate, -(k aT/~y)o

gas constint~ s - %

Reynolds nwber based on L, PmumL/Pm

Reynolds number based on x, Pmumx Km
I

Sutherland constant; 216*R for air (cf. eq. (10))

absolute temperature”
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Te

t

u,v

equilibrimn wall temperature for zero heat transfer

transformation variable, definedby equation (13) or (14)

velocity components in x- and y-directions, respectively

coordinates parallel and normal to surface, respectively

constant parameters, depending on N
w’

and defined after

equation (A4)

ratio of specific heats, cp/%r; y = 1.4 for air

boundaiy-layer thicknesses in W- and xt-planes, respec-
tively (cf. also eqs. (15) and (16))

recovery factor, definedby equation (42)

A = RL (bt/L)2

IJ coefficient of viscosity

v kinematic viscosity, v/P

k dimensionlesss

P -SS density

T dimensionlesss

Subscripts:

distance along wall, x~

variable, t/5t

o values at wall; for example, To

1 local.-valuesat outer

‘1
and

%

m values in undisturbed
cf. footnote 2)

edge of bcnindary

free stream; for

layer; for example,

example, Mm (AIso,

*’

w



NACATN 3157 7

GENERAL EQUATIONS

The following equations describe the steady, two-dtiensional, lsminar-
boundary-layer flow of a compressible gas along a slightly curved wall:

Momentum equation in the x-direction:

pu~ + P% = -l?.+ (WY)
Y

Momentum equation in the y-direction:

Continuity equation:

m

Equation of state:

=0
‘Y

(Pu)x+ (Pv) = oY

p = pRT

Energy equation:

Equation (2) implies that the static pressure within the
is the same as the static pressure in the potential flow
boundary layer. ‘IWs, for slightly curved walls

-Px = -dp/dx = Pl~(d~/ti)

w’

(1)

(2)

(3)

(4)

b)

boundary layer
just outside the

(6)

where the subscript 1 denotes local conditions at the outer edge of the
“ boundary layer. It may be noted that the assumption that the pressure

h the boundary layer is equal to the potential flow pressure must be
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modified at high Mach numbers and very low Reynolds numbers
The methods to be used in the analysis of such flows are as

NAC~TN 3157

(cf. ref. 17). w
yet not clear.

As is usual in aeronautical problems the coefficients of viscosity and
heat conductivity are considered to be known functions of the tmper- 6
ature, while the coefficient of specific heat at constant pressure is
assumed constant.

It is convenient in the method of analysis to be presented here to
rewrite equation (7). If equation (1) is multiplied by u and added to
equation (5), it is readily possible to put the resulting equation in
the form

{[ 1}NR(P~ + P@ = v ~ - (1 - Nm) (U2/2)y
Y

(7)

provided the Prandtl number is assumed constant. For most gases the
actual change of Prandtl number with temperature is sufficiently small
to jmtify Ws assumption, especially since the experimental determi-
nation of the heat conductivity appearing in the Frandtl nmber is s@~ect
to considerable error (cf. ref. 18).

-- .

Before discussing a method of treatnent of equations (1), (3), (4),
h

(6), and (7) the mass density and coefficient of viscosity willl.be written
explicitly in terms of the temperature. Itromequations (2) and (4) one w
obtains the equation .,

.-

P/Pl = T~T (8)

For mathematical convenience the viscosity-temperaturerelation suggested
in references 7 and 19 is extended here to the case of pressure gradient.
Thus, within the boundary layer

P/vm‘= c(@ (9)
\

where

Ic . (To/Tm)l’2(Tm + s) (To + s) (lo)

With this choice of C the approximation of equation (9) to the actual
viscosity-temperaturerelation is good in the neighborhood of the wall.,
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7
where the skin friction and heat-transfer properties are determined, and
is, for most problems, considered satisfactory throughout the boundary

●
layer. It may be pointed out that this viscosity-taperature relation
iS equivalent to using ~/~1 . C(T/@ where C is similar& deftied

in terms of To and Tl, if it is assumed that the ratio VI I_Lmis
Icalculated by means of the exact Sutherland relation.

By integrating equtions (1) and (7) with respect to t over the
boundqry-layer thictiess t . 0 to t . bt and using the boundary con-

ditions u . v = O at t . 0, together with smooth transition of the
velocity and temperature profiles to their local ma$n-stresm values, the
following differential-integral eqmtions are obtained:

(/9 {‘1 (h’ + A F1’ + F1 loge P1
)[ ()’+(’Ogeul’Fl+ l+& 2F2 ‘%)]}

+@)f-q’h) (T./T.)~lqo.
“u

(1) {[ Wgepl)’’(-ul’ ‘
F32?r+AF3’+F

)]}

where

‘1‘J’(%+-(“/%]“

‘2=J’pbl)-(“!q“

(U)

(1’)

.’ ‘3 =J’w+-(++]‘T

.
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I‘r=tb t

The prime denotes differentiationwith respect to ~, smd t is the
Dorodnl_tz~ variable defined by the transformation

or by the inverse

Moreover,

‘ ‘LyM w

Y ‘&t (+,) dt

or

(13)

(14)

(15)

(16)

The quantities P1/Pw ~d ~ in equations (Xl.) and (1.2)are

I
related to u~ Um, which is a function of ~ prescribed by the potential

flow about the body in question. Thus, in accordance with the usual
isentropic flow relations,2

‘In applying these relations and interpreting infinity conditions,
the presence, in the supersonic case, of attached or detached bow waves
should be considered. “Infinity” conditions should then be taken as con-
ditions just behind such shocks on the streamline which in potential flow
would form the body under consideration.
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{

%=(-W%O)%3l+(y [ /)]}-1/2-l)(Mm2/2) 1- (u_# (18)

Approximate solutions to equations (lJ) and (12) csn be found by
aSS_ U/Ul ~d H/Hl as functions of T which satisfy certain

boundary conditions at T = O. and T . 1 to be discussed in detail
later. In these profiles one psrsmeter in addition to X is left unde-
termined after the boundary conditions sre satisfied, and these two param-
eters are considered as the two unknown functions of ~ to be determined
by equations (IL) and (12).

In setting up the final differential equations, examination of equa-
tions (11) and (12) indicates that, in addition to selecting the profiles

. for u/ul and H/Hl with their appropriate boundary conditions, one

must prescribe (“@m)(~)> Mm, ~d N&. Moreover, the values of the
d

fluid properties’at’i&inity must also be specified. ltcamthe solutions
to equations (11) and (12) all quantities in the ~T-plane can easily be
found; the transformation, equation (14), can be applied to obtain the
corresponding quantities in the w or physical plane. For this,purpose
eqwtion (14) may be conveniently written as

{ 1Y/L= (%/L)JT (H/%) ~+ (7-1)(%72] - (7-1) (.72) ppJ2 dT

(19)

The boundary conditions that the velocity and stagnation-enthal~
profiles are to satisfy will now be discussed. As indicated in the
“Introduction”a sixth-degree polynomial in T for the velocity and a
seventh-de~ee polynomial for the sta~tion enthalpy are suggested on
the basis of the critical study of the use of integral methods in

d compressible-boundary-layeranalysis presented in reference 1. Thus,
let
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Iu U1
6

= .x
j=o
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(20)

(21)

All of the aj and b
J

coefficients except one are determined frcm

boundary conditions at ~ = O and T = 1. ‘Zn setting up the differatial-
integral equations (11) and (12), the boundary conditions which must be
specified to obtain a unique and exact solution to the governing partial-
differential equations have been applied. In the ~7-plane these are:
AtT=(),

and at T ‘=1,

}

H/Hl = fo/~) (E)

J

(22)

(23)

●

“

The boundary conditions specified here are the usual ones in heat-trmsfer
problems. It is possible to specify instead of

/
Ho ~, either

KW&.1~. 140

or some relation between these two quantities as in the case of radiation
Coolimg. In principle there is no loss in generality here, since Ho/%
is left arbitrary and nothing is specified with respect to

[(0]
EH1 .

‘o

.
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r In addition to requiring that the assmed profiles satisfy boundsry
conditions (22) and (23), i-tis custcmry in the integral methods (cf.,
e.g., ref. 1) to select the profiles so that at the wall.and at the edge

k of the boundary layer sane of their derivatives have the same values as
those which an exact solution to the original partial-differential equa-
tions under boundary conditions (22) and (23) would yield. For the pro-
files of equations (20) and (Z) these additional conditions can be
obtained from equations (1) and (7)and from differentiation of these
equations with respect to t. In this way one obtains the following
boundary conditions
At T=(),

c (T1/TJ FP1) I-T

to supplement those of equations (22) and (23):

= -~(p@) (’o/~) ~ +(7 - l)M:/q (%/%)’ (24)

(’0,,,) (y/u-l)mT= (y%)m(’/%)T (25)

~+ ‘y - ‘452/2](’/’1)., =&-%), -1)”:p%)J2‘x]

(%~JANPx(%/p.)~+%.)T(’0/%) ‘ =c(%AJ{(’pi)-TTT

3P - NJ(Y - .)%’(q%)Tpp@+ (y - ( 2‘) “1/2]} (27)

At T=l,

w’+.. =0’%)...=(’/’l)TT=(H/’JTTT=0 (28)
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With eqyations (22) to (28)fourteen of the fifteen coefficients in
the velocity and stagnation-enthalpyprofiles of equations (20) and (21) x
can be determined in tams of A. of the fifteenth coefficient (to be.
ch06en as bl), of the prescribed functions--plpm) (~) and (i/HI) (E), i
and of the prescribed parameters ~ and Nw.

As explained in the “Introduction,” it will be observed that only
one boundary-layer thickness bt is here assumed and that thus no

distinction is made between a velocity and a temperature boundary-layer
thickness. This, however, does not impose an undue restriction on the
shape of the temperature profiles, since the latter (see eq. (21)) sre
here permitted to retain an additional parameter to be determined, not
by any boundary conditions, but by the differential equations (viz,
eqs. (1.1)and (W)).

Examination of eqwtions (24) to (28)indicates that considerable
simplification is achieved in the boundary conditions, and therefore in
the analysis, under two s ecial cases: (a) The flow without axial pres-
sure gradient p.pm = $9 which also corresponds to the practically

interesting case of the supersonic flow over a thin wedge, as well as
to the subsonic (or supersonic) flow over a flat plate and (b) the air-
foil with pressure gradient, and constant wall temperature, in a fluid
with Prandtl nuuiberequal to unity. Although the assumption of constant

●

wall temperature does not appear to be exactly realized on practical
wings, it appears desirable to investigate the boundary-layer character-
istics under these assumptions since the pressure-gradient,heat-transfer

e

case in a compressible flow has not yet been analyzed entirely satisfacto-
rily from the standpoint of simultsmeous accuracy and simplicity.

Fmw WITHOUI’AN AXIAL PRESSURE GRADIENT!

~ this section a general solution based on the previously derived
integral-differentialequations will.be obtained for the special case of
flow without axial pressure gradient. The accuracy of this solution is
then investigated by ccmparing it with more exact solutions.

General Case

In the case of the flow without axial pressure gradient and with
general but constant Prandtl number and variable wall tmnperature the”
integral-differentialequations (11) and (12) become:

—
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.

.

( /+F1
[(/ )1

A’+F1’A=C UU~
TO

( /’9F3 A’ +F3’h=
(’pm) [(7%)-J0

(29)

(30}

Here Ml - &, T1 = T., and so forth. ‘T!hesubscript co will be used

to denote the free-stream conditions for this case.

It is convenient to consider A and bl as the unknowns to be

determined by equations (29) and (30). Then the velocity profile satis-

fWubo_y conditions (22) to (28)iS

/
uul=2T - 5T4 + 6T5 - 2T6 (31)

while the bj coefficients of the stagnation-enthal.pyprofile become:

b. = %/% ‘ G1

1
b2 = 2G2

b3 = 25A

b~ =35(1-%) -20G2-8G3A-20b1 (32)

b5 . -8+q)+bG2+12G@+4!%I

b6 = 70(1 -~) - 30G2 - 8G@ - 36b.
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where the G’s are known functions of ~ defined by: m

~= (H~Hm)(~) 1 ●

From the definition of F1 amd from equation

F1 = 985/9,~9

J
(31) it is found that

(34)

similarly,

( - ) - (953/180,180)G3h -F3 = (31/126) 1 ~

(3@9,~9)G2 - (82@2,012)bl (35)

With-the value of F1 given by equation (34), ~(~) canbe found

directly from equation (29). Thus with the requirement that A(O) = O,

wher#

Equation (30), which gives bl(~)~ bec~e~:

‘3’ - @-/4N~) (c/cl)b’+ (F3/2)(’/’1)= 0

(36)

(37)

.

.

31t may be noted that in this analysis the temperature-viscosity w

proportionality factor C, unlike in reference 5, can be permitted to
vary along the plate (i.e., C = C(g)) without any mathematical difficulty.

.
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a The solution of equation (37) satis~ing the requiremat that bl be

finite at ~ ,=O is

.

where

P1 = (1/2)+ (95/%463) (l/NR)

(3&)

1
G4(E)= (U>m+m

(
(31/252)(1- Gl)(c/cl)-

f
[ -@/c’]}-

1

(38b)

G1’ (31/1’26) + 953N

1
(

~/29, 550) (3/2)

(953NR/29,550) (c@l° - (151/9,009) (c/cI) G2)J
FYom equation (38a) with any prescribed temperature distribution

~(%) at thew’all, bl =bl(~) can bereadily determtied. lZromequa-

tions (32) the remaining bj coefficients can then be found as functions

of E and of the prescribed flow ps.mneters, for ~plej Nw ~d M.=

With the a
J

amd b~ coefficients and 1 all determined, the velocity

and stagnation-enthalpydistributions throughout the ~T-plsme are known.
E& application of equation (19), these distributions in the xy or phys-
ical plane are easily determined.

The average skin-friction coefficient Cf for the length L can be

calc~ated from equations (31) and (36) as

—

(39)

-J
1

where Cl = Cd~.
o
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The local heat-transfer coefficient h is usually defined as
*

( )J )h~-k!ly TO-T=
o

using solution (36) for A, equation (4o) yie~s:

where q is the recovery factor defined by the equation

i

I ( /)TeT1=l+(y-l)Ml*q2=

The (nondimensional)Nusselt number

(40) .

(41)

(He/H~)[ + (~ - 1)(%’/2jj(4’) .

.

‘Nu
iS thus

The value of ~ follows by setting bl = O and solving for the

constant-wall temperature, as determined by ~. Equations (33), (38),

and (42) with 7 = 1.4 are thus

7 =1-

found to hlp~ :

(
0.2721 -~ Fr) (44)

w“

.
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. It should be pointed out that equation (44) yields for Nw = 0.72

a value of ~ = 0.924, which must be compared with the value of 0.845

. given by the mathematically more exact method of Chapman and Rtiesin.
Although this result must be considered a consequence of the approximate
method of analysis used here, calculations involving rates of heat trans-
fer (such as Nusselt nmnber) for given values of the wall temperature
will not be directly affected by the equilibrium wall temperature and,
therefore, will not be appreciably affected by any inaccuracy in ~.4
This is borne out by the numerical example and the comparison with an
exact solution, given in a subsequent section here, with N

Pr
s 0.72.

It may nevertheless be convenient for certain applications to express
the wall temperature in terms of the predicted equilibrium temperature.
With th~ additional simplification of replacing variable C by an average
value C equation (43) beccmes:

where

.

(4>)

~= ’’’-l{F-(’o/Tel-[ 12 + (60f039/152j675)NR (Tore)’~ -

}
(40,026/152,6~)NR (To/Te)“E2 (45b)

J

In deriving equations (45a) and (45b), the following relation between ~

~d To/’e (cf. eq. (42)) was used:

)[ ( ( /)]/[%.=(TO/’e l+Y-l)M122~ 1+(7- 2(
1) Ml 121 (46]

4Because of the inaccuracy in q, it will be found, of course, that
when the wall temperature has the sane value as the true equilibrium
temperature, the present equations will not lead exactly to a zero heat
transfer at the wall. However, in such a case, it will be found t~.atthe
calculated rate of heat tramsfer will be relatively small.
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It should be observed that the recovery factor ~ does not appear in
solution (45a), although To/Te is prescribed.

If it is desired to calculate the actual rate of heat transfer q
(in British thermal units per second per square f~ot) for a given
ratio T /Te from equation (45a), then the Nusselt num~er as determined
by equat?on (45a) should be multiplied by (kl/x)(To- Te~, where Te is

the actual equilibrium wall temperature (as given, e.g., by exact theory
or by expertient). In practice, however, the wall temperature To (or

the ratio TOIT.), rather than the ratio of wall temperature to equilib-

rium temperature, wi~ usually be prescribed. In that case, the rate of
heat trsmsfer can be directly calculated (without any intermediate use
at all of the recovery factor q) frcm the expression:

The quantity bl can be calculated from equations
flow over a flat plate, with the observation that

(47)

(48)

Equation (47) has been derived with the use of the followipg relation
between temperature and stagnation-enthalpyprofiles, resulting from the
definition of the stagnation enthalpy H:

(49)

In order to determine the velocity and temperature profiles in the
physical (xy) plane, the inverse transformation givenby equation (19)
must be used to find the coordinate y associated with the variables ~
and T, while the x-coordinate may be found directly from the definition
of g.



NACA TN 3137

H If the wall-temperature distribution is prescribed as a polynomial
in the distance ~ along the wall, then the Nusselt number and temper-
ature profiles, following from equations (k>), (45b), and (49), can be*
directly calculated, without my quadrature, from the explicit expres-
sions given in the appendix.

It is of interest to observes the wall-tempczature distribution
required for zero heat transfer according to equations (45a) and (45b).
Thus, by setting G5 = O, a pecond-order linear clifferential equation

Pin Toe is obtained, whose general solution is:

To -1/2 -7.63/NR
—=l+A~ + BE (~o)
Te

where A and B are arbitrary constants. Equation (~) ~lies that
zero heat-transfer conditions will be satisfied not only by a uniform
wall temperature Te but also by a wall temperature varying inversely

as a certain power of the distance ~ along the floy. In partimllar,
.

the heat-transfer rate vanishes for 1 - (To/Te) . ~-1/2 (regardless of

the Fr~dtl nmber ). This result was also obtained by Levy (ref. 20) for.
incompressible flow, using an analysis restricted to power-law wall-
temperature distributions. The wall.temperature according to this distri-
bution would be infinite at ~ = 0, but Eckert (ref. 21) has reasoned
that a heat-line source or SW placed at the region whae ~ = O might
result in a temperature distribution of this type. The case of upstresm
cooling such as analyzed in reference 22 is the physical counterpart of
the abstraction of this line source or sink. Equation (~) indicates
that there is another type of wall-temperature distribution for zero heat

transfer, namely, 1 -
[TolTe) a ‘-7”6’’NW*

This is not included in

reference 20, where negative powers of ~ for To(~) lower in absolute

valuethan 7.63/~m (approxhately 10 for air) were assumed. It should

be noted that the results obtained in the present analysis are valid for
compressible flow (i.e., for any lkch nmiber). F3.nally,it may be noted
that temperature distributions of the form of equation (50) are not
included in polynomial distributions, such as those to which ref~ace 5
is restricted.

he observations in this paragraph were pointed out to the authors
- by Dr. M. ~OCKI1.
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Constant Wa12

A special stiple case of

Temperature emd NW = 1

the above solution for flow over a flat

.

plate is-of interest here. This is the case of constant wall temperature
.

and Prandtl mmher equal to unity. This case will Dow be shown to give
a Partic~~~ stiple check on the accuracy of the method presented here.

It is well known that if the Prandtl number is assumed equal to unity
then equations (1) and (7) imply for the flat-plate case that

H =A+Bu (51)

where A and B are arbitrsxy constants. Equation .(51)is an exact
stagnation-enthalpyrelation which satisfies.the boundary conditions of
constant wall temperature both with and without heat transfer. Therefore,
one test of the approximate method presented above is its automatic---
reduction to this exact relation, if the conditions under which this
relation is known to be exact are imposed. Z@is test will nowbe applied.

For the case of constant wall temperature and a Prandtl number of
unity, eq=tions (38b) and (33) imply: ●

G4 = (4,433/!2,463)(1-Gl)(l/E)
.

Hence, equation (S8a) yields:

bl . 2(1 - Gl)

Furthermore, from equations (32),

b2=b3=0
7

b4 = -5(1 - Gl)

b~ = 6(1 - Gl)
I

b~ = -2(1 - Gl) I

(52)

(53)

b7=0 J
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. When these bj coefficients are substituted into the

profile, one obt@ns

*

23

sta~ation-enthalpy

H/Hi = G1 + (1 - ~l)(2T- 5T4 + 6T5 - 2T6) (%)

and thus, by comparison with equation (31),

Equation (55) is

H/Hi = Gl+ (~ - ‘1)~~1) (55)

exactly eqmtion (51)in nondimensional form, with
the boundary conditions that H = Ho when u . 0 and H . HI when

u = U1. It is thus seen that the reduction to the exact energy equation

for this special case is automatic and rigorous. It has already been
shown in reference 1 that the agreement between the results of the inte-
gralmethod using a sixth-de~ee velocity profile in conjunction with
equation (55) (i.e., for constant wall temperature and Prandtl number
equal to unity) and the results of the exact solution of reference 5 is
good. The skin friction and heat transfer are for all practical purposes
exactly predicted and the laminar-boundary-layerstability limits are in
good agreement. It can therefore be expected that the more general inte-
gral method presented here, valid for cases of heat transfer in a pres-
sure gradient, will be accurate in more general cases, since the two
integral methods are in complete agreement for the special case @t
considered.

Comparison With the More Exact Method of Chapman and Rubesim

(Variable Wall.Temperature and N= # 1)

In reference 5, Chapan and Rubesin have applied their analysis to
the case of a variable, prescribed walJ temperature. To stiplify the
numerical analysis the proportionality constant C was assumed by them
to be equal to unity. The Prandtl number was assumed to be 0.72. In
the notation used here the wall temperature was expressed there as

/
To Te =1.25 - 0.83~ + 0.33.52 (56)

!RIUSfor equation (AI_)(see appendix) co = 1.25, c1 = -0.83, and

C2 = 0.33. The Husselt number variation with ~ givenby eqution (A2)

is showm in figure 1, along with the results of the more exact Chapnan-
Rubesin calculation. It can be seen that excellent agreement is realized.
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It will be noted frcm equation (39) with El = 1 that the average skin .

friction obtained by the present equations is in excellent agreement

with the exact value Cf
r
RL = 1.328, given-in reference ~. .

In c—~aring the velocity and temperature profiles predicted by the
two methods it must be kept in mind that fog strict comparison the wall-
temperature distribution should be precisely the same in tie two methods.
However, since Chapman and Rubesin assmed only the ratio of wall temper-
ature to equilibria temperature and since we two methods do not give
precise~ the same recovery factor, and hence not the same equilibrium
temperature, it is necessary for this ccmpsxl.sonto express the wall
temperature assumed by Chapnan and Rubesti, as well as that used in the
present report, in terms of the free-stresm temperature.

—

In figures 2 and 3 the comparisons of the temperature and velocity
profiles predicted by the two methods are shown for three values of ~
and for two Mach numbers. It can be seen that excellent agreement is
realized.

It may therefore be concluded from these nunerical results that the
momentum-and-ener~ integral method given here will yield god results
with little computational difficulty when applied to the case of zero .

axial pressure gradient, variable wall temperature, and general but
constant Frandtl number of the order of magnitude of unity. .

From a practical point of view, it should be kept in mind that the
solutions developed here are based on the viscosity-temperature rela- r
tions (9) and (10), which sre an approximation to the actual relation
for air. Because of relations (9) and (10), the results obtained here,
namely equations (39) and (45a), indicate that, for a fixed wall temper-
ature, the skin-friction coefficient and the Nusselt number will be
independent of Mach number. For the Sutherland viscosity-temperature
relation, howeva?, this will not be quite valid (cf. ref. 8).

FLOW WITH PRESSURE GRADIENT

For flow over a curved surface, such as an airfoil, where the local
velocity distribution

/
U1 ~ outside the boundsry layer is not constant,

but may be considered as k given function of the distance x along the
wall, the ordinary differential equations (n) and (lZ?),unlike the case
of zero pressure gradient, can no long= be easily solved for general
Prandtl number and arbitrary distribution of temperature along the wall.
For such flows, however, considerable mathematical simplifications occur
when the Prandtl number is unity and the wall temperature is uniform
(cf. especially eqs. (26) and (27)).

.
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. The assmnption N= = 1 has the additional theoretical advantage
that, according ‘t-oequation (hh), it automatically leads to the lmown
exact value of the recovery factor, namely,

.
the FYandtl nunber.

q = 1, for this value of
b fact, the parameter ‘1 now assumes particular

physical significance, since for %r = 1 equation (46) implies:

~ = TolTe (57)

Consequently, the case of Nm = 1 and uniform wall temperature will be

treated now in detail. It will be shown that for such a case a relatively
simple approximate solution of the equations can be obtained for any
given velocity distribution outside the boundary layer.

General Approximate Solution for

Nm = 1 and To = Constant

For this case, with (%~) (~) arbiti~, the.
andb

$
in equations (20) ‘ad (21) for the velocity

enthal y profiles can, by titue of boundary conditions (22)‘to (28),

coefficients a
J

and staanation-

. all be expressed in terms of ~ and bl, where bl remains arbit&qy,

while a2 is given by

(58)

where G6(E) is a given function-. The profiles can then be given in

terms of

/Uul=

q and bl as follows:

(2T - %4 -I-675’- 2,6) + @2,5) [.% + ,% - loT4 + IOT5 -3.6 +

1
~,pl)(-. + 10T3 - 20T4 + 1,.5- 4.6 (59)
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With
for

‘1 =

‘2 =

‘3 ‘

)( )H/El = G1 + (1 - Gl 35T4 - @+T~ + 70T6 - 20T7 +

(
blT - 20T4 + 45T5 - 36T6 + 10T7

)
(60)

expressions (59) and (6o), the following explicit expressions—
FII F2) SXLd F3 are ob*fied:

0.1093 + 0.00211.a2- 0.000622a;+ o.0004.2(b1a2p,) - -

0“mmO’’kla2Pl)2 - 0“m’5’(!’~a22Pl)

0.395 - o*500~ -%) + 0.107%1 + o.0212a2 - o.00062a22 +

0“m28haA)- o.000.5(b1s.:/Gl)
( 1)

2

1

(61)
- 0.ocmoo95b1a2 G1

~ - Gl)~.246 - 0.015a2 - 0.cxI181bla2 G, -
( IIk- . d

[
(/J_bl 0.0683 - 0.00324a2 - 0.CO041 b1a2 Gl

J

With expressions (59), (6o), and (61) itierted in equations (11)
and (12), two ordinary differential equations for A(g) ~d bl(g) me

obtained. Although these can be solved numerically for a given
(%pq’)~

the process may be tedious. A relatively simple general approximate
solution of these equatiom will, therefore, be derived.

Equation (11) can be solved approximately for X by assuming that
F1 and F2 can be replaced there by constant “average” values F1

and ~2 over the distance E. This is justifiedby the fact that the

variable terms there, which are proportjiona~to
.-

a2
and b

1’
are rela-

tively small (cf. eqs. (61)).
*

This is equivalent to replacing a2

and bl by constant “average” values =2 _gnd bl for this purpose.
.
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. With equation (59) for the velocity profile snd

equation (il.) then becomes the following linear
equation in h:

.

‘0’/’1)m=’)P4’-4
where ql is a constant, given by:

equation (58) for a2,

ordinary clifferential

(62)

(63)

A = 0.3G1 + 0.00438 + 0.023%2 - 0.00124~2

( 2)(’2P~i
D = 0.0905 + 0.0838 - o.o~~

1

With relations (17) and (18), the solution of equation (62) satisfying
the condition A = O or finite (if U1 = O at ~ . O) at the leading

edge (~ = O) is found to be:

(/ )A=4F1C (64)
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Equation (~) is similar in form to equaticms obtained for zero heat
transfer in references 3 and 23 and for heat trsmsfm, but with fourth-
degree profiles and two boundary-layer thiclmesses, in references 13
and 15.

To obtain a general approximate solution for bl(~), k’ Can ftiSt

be eliminated from equations (Ll) and (12). Assuming F1’ = F3’ = O

for this purpose and using equation (58), the following eqyation is thus
obtained:

(65)

have a value approximately

by +-%p. tithe
appearing in F1 and F2

Noting, in advance, that bl will usually

2(1 - %1)~ ‘b12 can be replacedequal to

relatively small term 0.0000095(b1a2/G1)2

I
and in the sml.1 term 0.0@lb12a2 ~ appear= h F3. ~ressio~ (61)

for F1, F2, and F3 can then be written as linear *ctions of bl>

with coefficients as functions of ~ and a2. ~ substituting these

expressions into equation (65), the following quadratic equation h bl

is obtained:

mbla+jbl-z.()

where

-~
[

2 3
m= —x10 63.s0 - 4.@5a2 + 2.705~ - 0.20~ ~

G1 G1 ()
+ 0-.01452~

% ,? G1
+ O.wyfl%L -

G1

.&-
()]

O.omiig 3
0“0*52%..2

J . 0.24602+ O.0~g17a2- 0.00-22 + 2%? -4—Xlo
‘% [

-2%.5~ k2.26a2- p.06Ta22+

2
0.&6Ya23- T.% ~

()
~ O.~@+ 0.(AG7% - 0.0232

1

%?.- %!?o.m284
% % % % %2

(66)

.

1= 2(1- Gj(O.2b602-
)1 ( ]

0.014~ l+% -0.ld@j+ 0.3G1+ 0.02116a2- o.m62k22
%

L

.

.
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. If terms which will ordinarily be negligible are rejected, equations (67a)
can be slightly reduced, thus:

.

232 -k
m =—X1O

[ 163.90 - 4.4$Kk2+2 (2.705- 0.20$62)
‘1 %

2> -4
J = 0.24602+ a2(0.07917- 0.~5868a~ + —Xlo x

%

[
(-234.5 1- 42.26 - 12.067a2)a2 - (7.906- 0=908%2) ~ L (67b)

1

{[
z = 2(1 - %)”(~.~)+”~a- 0901495~2) 1 + ; -o*10495 + ‘.3G1 +

a2 (0.(1211.)- WxxiJ21&2]
●

} L

. The solutioh of eq.~ation(66) is:

J* [() ]J2+~ 1/2

bl =-z
Z%m

(68)

(The physically appropriate root will in general be that which is closer

~c’the ‘al~e 2(1 - %).)

Equations (64) and
equations (11) and (12)

(% )= Constant . Their

integration.

(La) represent a simple approximate solution
for N- = 1 and uniform wall temperature

application will involve at most numerical

of

In applying equation (64), a reasonable “average” constant value
for a2, for any given (u&)(~)> Gl> and M, can usually be obtained

by considering equation (58) for ~ct~h and equation (64) for I/C.

An “average” value ~1 for bl, to be used in evaluating gl (eq. (63)),
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can be obtained by considering equation (68) for bl. For objects with

sharp leading edges, for which 1 = O at E_= O, it will ordinarily be
found that bl = 2(1 - ~) very rou@.y. After l(~) has been found”-

from equation (64), bl(~) canbe easily determined from equation (68).6 .

With l(~) and bl(~) determined, the boundary-layer characteristics
.

can all.be straightforwardly calculated. The local skin friction will be:

The Nusselt number,

~ - (+’) - (%”+q(W)(’+m) (%pm)%+’
(69)

giving heat-transfer pro~erties at the wall, will be

(kaT/&)oL
NNU =

(
km ‘o - Te) = p/@~lfll - ‘1] (’1/’.)@

(70)

‘I!hevelocity and temperature profiles follow from equations (59)and (6o),
in conjunction with equation (49) for T/Tl, and equation (19) for trans-

forming to the physical plane.

In accordance with conclusions reached in references 1, 2, and 3,
where the methods applied were essentially the same as in the present
investigation (viz, sixth-degreeprofiles, together with a solption of the
form of eq. (64)), it may be expected that the results obtained by using
the equations developed in this section will be sufficiently accurate for
most practical purposes, tncluding stability calculations. However, for
flow over a blunt-nosed ob~ect (i.e., “stagnation flow”) or for determi-
nation of the separation point in an advers”epressure gradient, these equa-
tions may have to be modified to yield stifi greater accuracy (cf. ref. 3,
where such modifications are shown for zero heat transfer). For stagna-
tion flow

(iU1 % )
= k~ , in fact, fourth-degree profiles give satisfactory

61n equations (67a) and (67b), the exact expression (58) for a2(g)

should be used and not any “average” value.

.
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.
accuracy (ref. 3). Consequently, stagnation flows with heat transfer
could be calculated by the method of ref=ence 15, where such profiles

. are used for this case.

It should, finally, be observed that equations (64) and (68) have
been based on the assmption that Fl, F2, and F3 are approximately

constant, or vary slowly, along the flow. Regarding Fl and F3, this

can be interpreted physically as an assmnption that the ratio of the
momentum thictiess to the boundary-layer thickness, and the ratio of the
thermal momentum thiclniessto the boundary-layer thickness, will be
approximately constant along the flow b the xt-plane. This approximation
has been justified by the relatively small.variable a2 terms (replaced

here by terms in =2) in expressions (61). In ordinary cases, the a2

terms will actuallybe found to be sufficiently small, either individually
or collectively, so that the approximating assumptions made here will be
satisfied. la any doubtful case, however, one can in general easily
check, a posterior, the validity of the approximate solutions developed
here by computing the -iable a2 terms with the approximate solution

obtained and ascertaining whether these terms have a sufficiently small
. net effect, relative to the other terms, to be replaced by constant

‘Iaverage”values. Assumptions corresponding essentially to the use of
constant “average” values of F1 and F2 have already been applied in

.
previous analyses (refs. 3 and 15).

CONCLUSIONS

From the analysis presented herein for the laminar compressible
boundary layer with heat transfer in flow with and without an axial
pressure ~adient, the following conclusions can be drawn:

1. The boundary-layer characteristics for the flow over a flat plate
can be easily determined with sufficient accuracy fian the equations
developed here, for a given constant Prandtl number (of the order of Mg-
nitude of unity) and a given wall-temperature distribution.

2. For flow with a pressure gradient, the boundary-layer character-
istics can also be easily determined with sufficient accuracy by the
equations developed here, provided the Prudtl nmber is unity and the
wall temperature is uniform. Here, the velocity distribution outside the

. boundary layer and the fYee-stream Mach number are’considered as prescribed.
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Some modifications of the equations may, for seater accuracy, be neces-
sary for flow over a blunt-nosed object and for determination of any
possible separation point.

Polytechnic Institute of Brooklyn,
llrooklyu,N. Y., Decemba 11, 19’52.

.

“
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APPENDIX

IIf the ratio To ‘Te is represented as a polynomial in ~, that

is if

,o/Te . f_ #

j=o
(Al)

then equation (k>) yields:

, .o.2n[-$c,Ej)-l((lpl,(l-co)-‘NLI @X

f @(J+ PJ1{ l+2j+
J=l

[(60,039/152,675)jNml+13,342(j - 1)/20,Olq
})

(A,)

With the wall temperature specified as in equation (Al), equation (19)
togetherwith the use of equations(31),(32),(36),and (49)leads to
the following ewlicit expression for y(g2T):

(A3)
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where

‘1 [
=Tl - 7T4 + 1475 -

1.
10T6 + (5/2)T7

[ 1
f2 = (4,433/9,852)T22-1673 +30T4 - (1-~/7)T5+ 5T6

f3 = -(73/18) 1-24+ M?6.2- 192.3+ (828/Y)T4-27.5- 50T6

1(1,008/ll)T8+ 36T9 - (72/13)T10

f4 = ( /)[T332-
1

12T2+20T3 - (90/7)T4 +3T5

T4
‘3 ‘ (/)[20 10 -

1
32T+40T2 - (160/7)T3+ 5T4

+ 108T7-

For convenience, the f functions and theti first derivatives with respect
to time, denoted by fi’, have been calculated and are plotted in

figures ~ and 5.
.

The temperature profiles in this case can be determined from the ._

e~licit -expression:

/[
( h]TT1= l-fl’+2f2’ + (7 - 1)(1’llap)(132f2’- f3 + 135f4’)+

[
1 + (7 - l)(l&/2)7] $ @ *1’ + 134f5’3-

=

(A4)
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. where

.
PI = (1-/2) + (%3/2,463) (1/NR)

[ )](/)132= 1- (1,208/4,455)(1- NW 2 PI .

133= 2(1 - N=)

134= 2Nw/3Fl = (6,0@/$@5)NM

P5 = 2 + (20,013/152,675)N&

The velocity profiles may be found from equations (31) and (A3).

It may be noted that, if desired, the ratio To ~ may be prescribed
F

as a polynomial in ~, thus:

M
To/Tl= > eJEJ

J=o

As canbe seen by comparison of equations (Al.)and
with equations (46) and (48), the results given by
can still be used, provided that one substitutes

[
cj=ejl+(y - 1) (M12/2) j ‘1

r

(A5)

(A5) in connection
equaticms (A3) and (A4)

(A6)

there.
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